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Motivation

Understanding the properties of light and its interaction with matter has been a major subject of scientific study for many
centuries. From the refraction of light (described by Snell’s law in the 17 th century) to the field of quantum optics, our
knowledge of light has undergone tremendous improvements over time. Using this knowledge, we have not only been
able to understand various physical phenomena around us, we have also been able to create devices to generate light as
well as control its properties, which is the basic premise of the field of Photonics.
In this regard, solid state devices play a crucial role as they have two main advantages:

• The miniaturization, scalability and accuracy of optical elements and their interface (e.g. for the communication
industry);

• The extraordinary physical effects of some crystals on incident or transmitted light (e.g. frequency doubling, photon
down conversion, polarisation rotation).

In this lab-course we will address the second issue and give you an introduction to three main properties of a light wave
namely, polarization, phase and frequency. Moreover, we will see how we can modulate these properties using devices
and optical components such as wave-plates, polarizing beam-splitters, Electro-optical modulator and acousto-optical
modulator. Following this lab-course, you should have a basic knowledge of these experimental tools.

Safety

• Always use the safety glasses when the laser is on. If the laser light hits your eye, it will immediately cause
irreversible damage. When handling with reflecting surfaces, take care you don’t produce arbitrary beams:
don’t wear watches or jewelry. Even if you wear the safety glasses, never look directly into the laser beam!
You should also not sit down beside the table.

• Be careful with high voltage. Never change the set-up while the high voltage power supply is on!
• Do not lean on the tables, the dampers (air-cushions) below could burst!

Program of the lab-course

The experiments are divided into three blocks, for each experiment we start out with a short introduction to the underlying
theory of the effects which you will study followed by the instructions to the experiment. A very good reference book
for this lab course is “Fundamentals of Photonics” by B.E.A. Saleh and M.C. Teich, 2nd Edition. In order to learn more
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about optoelectronics, the book “Lasers and Electro-Optics. Fundamentals and Engineering” by Christopher C. Davis is
highly recommended.
Please be prepared for each experiment on the first day, as there exists only one setup of each experiment and you will
need to switch those daily with your fellow students.

Report issues

If you have any issues with the instructions please report them in the associated repository through the link on the top of
the page.

2 CONTENTS



CHAPTER

ONE

PART 1: POLARIZATION OPTICS

Polarization of light has been and continues to be a subject of intensive research. The modern era of polarization began
in the early 19th century. In 1808, Etienne-Louis Malus made a crucial discovery while looking at the setting sun through
a crystal of Iceland spar. He observed that the intensity of the reflected light changed when he rotated the crystal. He
further studied this phenomenon and showed that this behavior was not only restricted to Iceland spar but could be generally
observed in any ordinary substance. His work led to the famousMalus Law which is a relation for the transmitted intensity
through a polarizer as a function of incident polarization.
In 1812, Sir David Brewster built upon the work of Malus and showed that for a given material, there exists a unique
angle of incidence for which light is fully transmitted or reflected depending on its polarization. This angle is known
as Brewster angle. A more general description was given by Augustine-Jean Fresnel who deduced the so-called Fresnel
equations which describes the behavior of light at the boundary of two media with different refractive indices, including
the effects of polarization.
These groundbreaking discoveries have led to the emergence of new fields of fundamental physics such as quantum optics
and have also resulted in several technological applications which have made their way to our daily lives.
In the next sections wewill revisit these discoveries experimentally and learn the basics of polarization of light by answering
the following questions:

• How do we show that light is polarized?
• How do we characterize the polarization of light?
• How do we manipulate the polarization of light?

1.1 Theory

Light can be described as an electromagnetic wave. A wave travelling in the 𝑧-direction looks like:

𝐸(𝑧, 𝑡) = 𝐸0𝑒𝑖(𝜔𝑡−𝑘𝑧)

with the wave vector 𝑘 = 2𝜋/𝜆. The electric field-vector ⃗𝐸, the magnetic field-vector �⃗� and the direction of propagation
̂𝑒𝑧 create an orthogonal system. Polarization describes the plane in which the electric field or the polarization vector ⃗𝑃 is
oscillating. One can observe ⃗𝑃 in the plane perpendicular to the direction of propagation and distinguish between three
types of polarization:

• Linear polarization: The electric field ⃗𝐸 is oscillating along a straight line in the plane of polarization.
• Elliptic polarization: ⃗𝐸 describes an ellipse. If the main axes of this ellipse are parallel to the transverse cartesian
coordinates, the wave can be written as1:

⃗𝐸± = 𝐸 (𝑎 ̂𝑒𝑥 ∓ 𝑖𝑏 ̂𝑒𝑦) 𝑒𝑖(𝜔𝑡−𝑘𝑧)

1 + gives clockwise polarization, − counterclockwise. The names are given by observing the wave propagating to the observer, but you might also
find the opposite definition in modern books

3
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• Circular polarization: ⃗𝐸 describes a circle, this is a special case of elliptic polarization.
A linear polarized wave can be thought split up in two other linear waves, that are in phase if their addition gives back the
original polarization.

⃗𝐸 = ⃗𝐸1 + ⃗𝐸2

It is also possible to obtain a linear polarized wave by adding two counter-rotating circular polarized waves.
Elliptic polarization can be written as a superposition of two linear polarized waves with a phase shift of 𝜋/2. The
maximum amplitudes of both waves give the main axes of the ellipse in the plane perpendicular to the propagation. For
equal amplitudes in both directions one gets circularly polarized light.
In general, natural light, emitted by atoms and thermal light sources, is not polarized. To achieve polarization additional
interaction between light and matter or matter-surfaces is needed.

1.1.1 Reflection and Polarization

If dielectric media are interacting with light the molecules are excited to dipole oscillations. When a wave hits a surface
between two different media with refractive indices 𝑛1 and 𝑛2 the beam is split in a reflected beam and a refracted one.
The refraction angle 𝛼2 is given by Snell’s Law:

𝑛1 sin 𝛼1 = 𝑛2 sin 𝛼2

The angles are taken between the beam and the normal vector to the surface in the plane of incidence, being the plane
parallel to the beams and perpendicular to the surface. The reflection angle is 𝛼1. (Recall that for reflection: 𝛼in = 𝛼out)
To calculate the amplitudes and intensities of the reflected and refracted beams, one has to separately observe the polar-
izations parallel or perpendicular to the plane of incidence.
Starting fromMaxwells Equations and the resulting surface conditions for �⃗�, ⃗𝐸, �⃗� and �⃗� one can calculate the amplitude
coefficients for the reflection 𝑟 and for the transmitted beam 𝑡. These are the square roots of the intensity coefficients 𝑅
and 𝑇 . For the calculations the reader is referred to the literature.
For a polarization perpendicular to the plane of incidence (also called TE-mode for Transversal-Electric, in German:
S-Polarization) the results are:

𝑟𝑇𝐸 = −sin (𝛼1 − 𝛼2)
sin (𝛼1 + 𝛼2) (1.1)

𝑡𝑇𝐸 = 2 sin 𝛼1 cos 𝛼2
sin (𝛼1 + 𝛼2)

For the wave polarized parallel to the plane of incidence (TM, Transversal-Magnetic mode, in German: P-Polarization)
the reflection and transmission coefficients 𝑟 and 𝑡 are: $𝑟𝑇𝑀 = tan(𝛼1−𝛼2)

tan(𝛼1+𝛼2)$

𝑡𝑇𝑀 = 2 sin 𝛼1 cos 𝛼2
sin (𝛼1 + 𝛼2) cos (𝛼1 − 𝛼2)

The minus sign in equation (1.1) shows that for a perpendicular polarization a phase shift of 𝜋 appears at the surface.

4 Chapter 1. Part 1: Polarization optics
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1.1.2 Birefringence (Doppelbrechung)

Linear, isotropic, homogeneous media have the property that for each spatial direction in which light is propagating
through it, the index of refraction 𝑛, and thus the velocity of light, is the same. In these media, such as crystals with cubic
symmetry, one finds the simple proportionality �⃗� = 𝜀 ⃗𝐸, where the permittivity 𝜀 = 𝑛2 is a scalar. For anisotropic media
𝜀 becomes a symmetric tensor 𝜀𝑖𝑗. This means that the refractive index is now different for the main axes of the crystal
and for different planes of polarization of the light propagating along them.
One has to differentiate between uniaxial and biaxial media. Uniaxial media have one axis that is called optical axis.
When light is travelling through the crystal along the optical axis, the index of refraction it encounters is equal for both
polarization directions. On the axes perpendicular to the optical axis one finds so-called ordinary and extraordinary indices
of refraction.
If one expands 𝑛 to three dimensions, meaning for each possible direction of propagation for light in the crystal, one
obtains an ellipsoid whose main axes coincide with the axes along which light experiences only a single 𝑛. This ellipsoid,
shown in Fig. 1.1, is called the indicatrix. (Which axis is the ordinary axis or extraordinary axis depends on the symmetry
of the crystal, additional details can be found in the literature.)
To find out what index of refraction a wave experiences, one has to decompose the light in linear polarized waves along
two axes 𝑎 and 𝑏, and then calculate the indices 𝑛𝑎 and 𝑛𝑏. Here, this is shown in general. In all practical cases, one
would try and decompose the wave along the main axis to simplify the problem, because if light is polarized along an
optical axis it ‘sees’ only one index of refraction.
Biaxial crystals show a more complicated indicatrix. In those cases it is usually not an ellipsoid, and the main axes do not
coincide with the optical axes.

Fig. 1.1: Indicatrix or index-ellipsoid for an uniaxial medium.

1.1. Theory 5
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1.1.3 Wave plates (retarders)

Wave plates are birefringent crystals with a thickness of (𝑚 + 1
4 ) 𝜆 with 𝑚 an integer (quarter wave plate) or (𝑚 + 1

2 ) 𝜆
(half- wave plate). They are used to change a certain polarization state of incident light into another state. In this case
the expressions ordinary axis and extraordinary axis are not used, instead the axes get their name simply by the value of
the refractive index along the axis: fast and slow axis.

Fig. 1.2: Rotation of polarization in a half-wave plate.

Waves travelling along the different optical axes of a half-wave plate experience a phase shift of 𝜋 relative to each other,
so that their relative optical retardation is half a wavelength. For linear polarized light this means that the wave will leave
the retarded again linear polarized, but the plane of polarization will be rotated by twice the angle it had to the optical
axes when it entered the wave plate, as shown in figure Fig. 1.2. For the special case of 𝛼 = 45∘ the polarization will be
rotated by 90∘.
Quarter-wave plates give a relative phase shift of 𝜋/2 to waves propagating along the axes. This means that they turn
linear polarized light into elliptically polarized light or the other way around. For linear polarized light incident at 𝛼 = 45∘

one obtains circularly polarized light.

1.2 Experiments: polarizers and wave plates

In this first part, you should get used to the optical devices you will use throughout the experiments of this lab-course:
polarizers, polarizing and non-polarizing beam splitters and wave plates (retarders). If your initial state of the light is
polarized, you can cross-check your results afterwards by applying the matrix Jones formalism.

• Take a glass plate. Use it to partially reflect the incident laser light and find the Brewster’s angle. Explain your
observations. What happens when you use other optical devices after it? Use the reflected light at the Brewster’s
angle to understand the effect of other optical elements such as polarizers and beam splitters.

• Fix the position of the first glass plate at the Brewster’s angle. Take a second glass plate and use it to reflect the light
coming from the first glass plate. Build it up such that the plane of incidence is perpendicular to the previous one.
What happens to the light after the second reflection? Explain your understanding of what happens to the light in
the first glass plate at the Brewster’s angle, according to your observations in the second one.

• Take two polarizers and calibrate them. In order to calibrate them, you have to find the polarization axis. Use
the reflected light at the first Brewster’s glass plate for such purpose (make sure that you are still working at the
Brewster’s angle!). How can you set a reference to calibrate the polarization axis of polarizers and polarizing beam
splitters (PBS)? Find a way based on the reflection properties of the light at a surface.

• Check if your laser is polarized.
• Find out how the light which is reflected by or passing through the beam splitters is polarized. How do they work?
Calibrate the type of beam splitters and the type of polarization that they might induce.

6 Chapter 1. Part 1: Polarization optics
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• Build a setup to test the waveplates: Find a position at which the half-waveplates rotate the incident polarization by
90∘.

• Find a position at which the quarter-waveplates produce circular polarized light.
• Perform the experiments sketched in Fig. Fig. 1.3 and Fig. 1.4: set up two quarter wave plates behind each other
and find out what they do with the polarization of light passing through both plates. Then take the second quarter
wave plate and turn it around on its post by 180∘, so that the beam traverses the wave plate in the opposite direction.
Do this for both combinations of input polarization vs.\ wave plate orientation shown in the figures. What do you
expect? What do you observe? Find an explanation for the effects; what is the difference between both experiments?

• Use a mirror to reflect linearly polarized light in a straight angle (> 90∘) and measure the polarization of the
reflected light. Repeat for a linear polarization perpendicular to that of the previous experiment. Where does the
phase shift of 180∘ occur?

• Send linear polarized light through two quarter wave plates with their axes at 45∘ with respect to the plane of
polarization and check the output polarization (either case of Fig. 1.3 or Fig. 1.4). Now change the setup to
contain a mirror between the two waveplates which reflects the light at a straight angle ( > 90∘). Check the output
polarization again. Explain your observations.

Fig. 1.3: Operations of quarter wave plates with different orientations

• Think about what happens to a polarized light beam which passes through a quarter wave plate and is then reflected
by a mirror perpendicular to its path so that it passes again through the same wave plate on the way back. How does
the outcome depend on the orientation of the wave plate relative to the incident polarization? Design and perform
an experiment to prove your theory.

• Repeat the previous experiment for a half-wave plate.
• Look into the light of a white lamp through the optical isolator. Do so in both directions of the isolator and explain
your observations. How would you have to insert the isolator into the laser beam to see the isolation effect? Test
your hypothesis.

• Compare your results on the polarization of the laser beam with the output of the polarization analyzer.

1.2. Experiments: polarizers and wave plates 7
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Fig. 1.4: Operations of quarter wave plates with different orientations; here you might have to first rotate the incoming
polarization.

8 Chapter 1. Part 1: Polarization optics



CHAPTER

TWO

PART 2: ELECTRO-OPTIC EFFECT

2.1 Theory

Some materials change their optical properties when they are brought into an electric field. To use this effect one needs
an electro-optic medium, such as some cubic crystals; they called electro-optical modulators (EOM). In that case, the
refractive index 𝑛 of the medium becomes a function of the applied field 𝑛 = 𝑛(𝐸). Since the variations of 𝑛 with 𝐸 are
only small, 𝑛(𝐸) can be expanded in a Taylor series about 𝐸 = 0:

𝑛(𝐸) = 𝑛(0) + ( 𝑑𝑛
𝑑𝐸 )∣

𝐸=0
𝐸 + 1

2 ( 𝑑2𝑛
𝑑𝐸2 )∣

𝐸=0
𝐸2 + ..

Using the coefficients

𝑟 = −2
𝑛3 ( 𝑑𝑛

𝑑𝐸 )∣
𝐸=0

𝑠 = −1
𝑛3 ( 𝑑2𝑛

𝑑𝐸2 )∣
𝐸=0

and neglecting higher order terms, one can rewrite 𝑛(𝐸) as

𝑛(𝐸) = 𝑛 − 1
2 𝑟𝑛3𝐸 − 1

2 𝑠𝑛3𝐸2. (2.1)

Typical values for 𝑟 are 10−12 to 10−10 m/V. It is sometimes convenient to use the electric permittivity instead of the
refractive index: 𝜂 = 𝜀0/𝜀. With

Δ𝜂 = ( 𝑑𝜂
𝑑𝑛) Δ𝑛

this yields

𝜂(𝐸) ≈ 𝜂(0) + 𝑟𝐸 + 𝑠𝐸2 (2.2)

For 𝑟 ≫ 𝑠 we obtain the linear electro-optic effect or Pockels Effect, where the refractive index depends linearly on the
applied field. In that case the equations are reduced to 𝜂 = 𝜂0 + 𝑟𝐸 and

𝑛(𝐸) ≈ 𝑛0 − 1
2𝑟𝑛3𝐸. (2.3)

Where 𝑟 is called the Pockels coefficient.
Similarly, when 𝑟 ≪ 𝑠, we can see from Eq. (2.2) that we obtain a quadratic dependence of refractive index on the
electric field. This is known as the Kerr effect, which will not be studied here.

9
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Since the electro-optic crystals are generally birefringent, the effect of the index of refraction on the light is governed by
the relative orientation of the electric field, the crystal axes and the beam path. Thus, the Pockels coefficient 𝑟 in Eq. (2.1)
is actually only one entry from a Pockels coefficient-tensor.

𝜂𝑖𝑗(𝐸) = 𝜂𝑖𝑗 + ∑
𝑘

𝑟𝑖𝑗𝑘𝐸𝑘 = 𝜂𝑖𝑗 + Δ𝜂𝑖𝑗.

Since the index ellipsoid, the indicatrix, can now no longer be written with just the principal axes, we have to revert to its
general form:

( 1
𝑛2 )

1
𝑥2 + ( 1

𝑛2 )
2

𝑦2 + ( 1
𝑛2 )

3
𝑧2 + 2 ( 1

𝑛2 )
4

𝑦𝑧 + 2 ( 1
𝑛2 )

5
𝑥𝑧 + 2 ( 1

𝑛2 )
6

𝑥𝑦 = 1

We thus obtain for the different components:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Δ(1/𝑛2)1
Δ(1/𝑛2)2
Δ(1/𝑛2)3
Δ(1/𝑛2)4
Δ(1/𝑛2)5
Δ(1/𝑛2)6

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33
𝑟41 𝑟42 𝑟43
𝑟51 𝑟52 𝑟53
𝑟61 𝑟62 𝑟63

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜
⎝

𝐸𝑥
𝐸𝑦
𝐸𝑧

⎞⎟
⎠

.

The entries in the 𝑟 matrix are constrained by the crystal symmetry. The typical magnitudes for the 𝑟𝑖𝑗-coefficients are
10−12 m/V. The material used in the practicum is LiNbO3. It is a uniaxial crystal with a crystal symmetry 3𝑚 and it has
indices of refraction 𝑛1 = 𝑛2 = 𝑛𝑜, 𝑛3 = 𝑛𝑒. The Pockels Coefficients for LiNbO3 are:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −𝑟22 𝑟13
0 𝑟22 𝑟13
0 0 𝑟33
0 𝑟51 0

𝑟51 0 0
−𝑟22 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −3, 4 8, 6
0 3, 4 8, 6
0 0 30, 8
0 28 0
28 0 0

−3, 4 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

× 10−12 m/V

Where the first matrix shows the general case for crystals with 3𝑚 symmetry. However, the Pockels coefficients are
very hard to measure reliably and they can be affected strongly by contaminants inside the crystal. Therefore, the above
numerical values are only indicative1.
For the case of a crystal without an applied field, the indicatrix is given by

1
𝑛2𝑜

𝑥2 + 1
𝑛2𝑜

𝑦2 + 1
𝑛2𝑒

𝑧2 = 1 (2.4)

Depending on the direction of the applied electric field and the direction of the light through the crystal, several distinct
situations are possible. Each assembly shows a different behaviour.
One of the most widespread orientations is with the Pockels cell having a longitudinal field, i.e. applied along the extraor-
dinary axis, 𝑧, and the light also travelling along that axis. This means that the light passes through transparent electrodes.
In a cell with a transverse field the electric field can be applied along the ordinary axis, 𝑥, and the light then travels along
the extraordinary axis, the optical axis 𝑧.
The Pockels cell of this practicum, however, has the electric field applied along the extraordinary axis 𝑧, with the light
travelling along one of the ordinary axes, the 𝑦-axis. In this case, the applied electric field ⃗𝐸 = 𝐸𝑧 modifies the indicatrix
to:

( 1
𝑛2𝑜

+ 𝑟13𝐸𝑧) 𝑥2 + ( 1
𝑛2𝑜

+ 𝑟13𝐸𝑧) 𝑦2 + ( 1
𝑛2𝑒

+ 𝑟33𝐸𝑧) 𝑧2 = 1

1 Another source gives for LiNbO3: 𝑟13 = 9.6, 𝑟22 = 6.8, 𝑟33 = 30.9, 𝑟51 = 32.6. All values in [pm/V].

10 Chapter 2. Part 2: Electro-optic effect
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This equation can be cast in the form of Eq. (2.4)
1

𝑛′𝑜
2(𝐸)

𝑥2 + 1
𝑛′𝑜

2(𝐸)
𝑦2 + 1

𝑛′𝑒
2(𝐸)

𝑧2 = 1

with the modified ordinary and extraordinary indices of refraction 𝑛′
𝑜(𝐸) and 𝑛′

𝑒(𝐸) given by

𝑛′
𝑜(𝐸) = 𝑛𝑜√

1 + 𝑟13𝑛3
𝑜𝐸𝑧

and 𝑛′
𝑒(𝐸) = 𝑛𝑒√

1 + 𝑟33𝑛3
𝑒𝐸𝑧

.

With the approximation 1/√1 + 𝑥 ≈ 1− 1
2 𝑥 for small 𝑥, we can indeed rewrite these indices of refraction in the manner

we have seen before in Eqs. (2.1) and (2.3):

𝑛′
𝑜(𝐸) ≈ 𝑛𝑜 − 1

2 𝑟13𝑛3
𝑜𝐸𝑧 and 𝑛′

𝑒(𝐸) ≈ 𝑛𝑒 − 1
2 𝑟33𝑛3

𝑒𝐸𝑧 (2.5)

2.1.1 The Pockels Cell

An electro-optic crystal between two capacitor plates is called an electro-optical modulator. When the crystal exhibits the
Pockels effect it is called a Pockels cell.
For light with a wavelength 𝜆 travelling through a medium of length 𝐿 with an index of refraction 𝑛, the incurred phase
in the medium is given by:

Φ = 2𝜋𝑛𝐿/𝜆
Since each ordinary and extraordinary axis, has a different index of refraction, 𝑛𝑜 and 𝑛𝑒, respectively. Light travelling
through a birefringent crystal experiences a phase retardation ΔΦ between the two polarizations equal to

ΔΦ = 2𝜋
𝜆 (𝑛𝑒 − 𝑛𝑜) 𝐿

With a Pockels cell one can manipulate both 𝑛𝑜 and 𝑛𝑒 by the strength of the electric field, as outlined above. The phase
retardation ΔΦ due to a Pockels cell with an applied field 𝐸 is thus given by $ΔΦ(𝐸) = 2𝜋

𝜆 (𝑛′
𝑒(𝐸) − 𝑛′

𝑜(𝐸)) 𝐿.$
using the approximations of Eqs. (2.5) this becomes:

ΔΦ(𝐸) = 2𝜋
𝜆 (𝑛𝑒 − 𝑛𝑜 − 1

2 (𝑟33𝑛3
𝑒 − 𝑟13𝑛3

𝑜) 𝐸𝑧) 𝐿.

With the applied voltage 𝑉 = 𝐸𝑑 we thus obtain that the retardation is given by Eq. (2.7):

ΔΦ(𝑉 ) = Φ0 − 𝜋 𝑉
𝑉𝜋

(2.6)

where

Φ0 = 2𝜋
𝜆 (𝑛𝑒 − 𝑛𝑜) 𝐿 and 𝑉𝜋 = 𝑑

𝐿
𝜆

(𝑟33𝑛3𝑒 − 𝑟13𝑛3𝑜)
are the retardation for 𝑉 = 0 and the so called half-wave voltage, respectively. At 𝑉 = 𝑉𝜋 the relative phase retardation
between the two polarizations is 𝜋, causing the Pockels cell to act as a half-wave plate.

2.1.2 Transverse Intensity Modulation

One can use a Pockels Cell to modulate the intensity of light. As we have seen, the relative phase retardation between the
two polarizations is variable. For intensity modulation, one needs to put the Pockels cell between two crossed polarizers,
placed at 45∘ with respect to the optical axes of the crystal. This set-up has an intensity transmittance 𝑇 = sin2(Φ/2).
With equation (2.6) the transmittance of the device then is a periodic function of V:

𝑇 (𝑉 ) = sin2 (Φ0
2 − 𝜋

2
𝑉
𝑉𝜋

) .

The device can also be used as a linear modulator if the system is operated in the region near 𝑇 (𝑉 ) = 1/2.

2.1. Theory 11
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2.1.3 Optical Activity and Faraday-Effect

Optically active media rotate the plane of polarization of linear polarized light. As described above, one can treat linear
polarization as a superposition of two circular polarized waves with the opposite direction of rotation. In an optically
active medium these two circular waves have different phase velocities, and thus the resulting linear polarized wave turns
its plane of polarization. Natural optical activity appears in chiral media, such as solutions of dextrose or lactic acid. For
these media, the direction of rotation does not depend on the direction of propagation through them; the behaviour is
symmetric.
Some media become optically active when an axial magnetic field is applied, which is known as the Faraday effect. In
this case the direction of rotation does depend on the direction of propagation, because the B-Field determines a spatial
axis and thus breaks symmetry. The angle by which the polarization is rotated depends on the length of the medium 𝐿,
on the magnetic field strength |�⃗�| and on the so-called Verdet constant 𝜐:

𝛼rot = 𝜐𝐿|�⃗�|.

The Verdet constant is a function of the wavelength: $𝜐 = − 𝜋𝛾
𝜆𝑛$

where the magnetogyration coefficient 𝛾 is a material constant of the medium.

Fig. 2.1: A Faraday isolator or optical diode

The Faraday effect can be used to build an optical isolator. An optical isolator consists of a medium sensitive to the
Faraday effect in an axial magnetic field. The set-up is enclosed by two polarizers with an angle of 45∘ to each other, as
shown in figure Fig. 2.1. In an optical isolator the first polarizer defines a plane of linear polarization of the light incident
on the optically active medium inside the isolator. The medium rotates the plane of polarization by 45∘ clockwise, so that
the light can pass the rear polarizer.
Light entering the isolator from the other side will first be polarization filtered by the rear polarizer. The plane of po-
larization is then rotated again by 45∘ by the medium, this time counter-clockwise. The result is that the polarization is
finally rotated perpendicular to the front polarizer, thus it is absorbed. In this way the optical isolator is a one-way device
for light, so that is also known as an optical diode. Note that the length of the active medium and the magnetic field
determine the amount by which the polarization is rotated, so that optical isolators need to be designed to the wavelength
of the used light in order to work properly.

12 Chapter 2. Part 2: Electro-optic effect
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2.2 Experiment

In this part you will get a feeling of how an electric field (a voltage) can alter the optical properties of a crystal, in the
sense that the refractive index of the material is changed. In the first few experiments you will measure the change of the
index of refraction directly. In the second set of experiments, you will study the extent of the manipulation by its effect
on the polarization state of light transmitted through the crystal.
The electric field is usually applied in the direction of the optical axis of the crystal. There are two possibilities for the
direction of the light: parallel or perpendicular to the electric field. In the set-up used in this lab-course, the electric field
is along the optical axis and the laser beam is incident perpendicular to the field. Take a closer look at the device; you can
clearly see the (copper) electrodes against the crystal. (Don’t do this when the laser is on…)
Since the electro-optic effects are only rather small, one needs a high voltage to drive the Pockels cell. The high voltage
power supply used to drive the Pockels cell can be controlled by the dials on its front, see Fig. 2.2.

Fig. 2.2: Front view of the high voltage power supply used to drive the Pockels cell.

The preferred way during the practicum, however, is to control the high voltage supply using a control voltage, applied to
the analog input on the front panel of the power supply. A periodic input signal will cause an accordingly varying output
voltage, e.g. you can sweep the voltage on the Pockels cell using a sawtooth wave form. The toggle-switch determines
whether the power supply is controlled by the dial-settings (Int) or by the input voltage (Ext). Note, however, that the
output voltage or current can never exceed the internal control settings (as set with the dials), even when using the analog
input: make sure that you set the output range correctly. The output voltage and current are indicated on the displays of
the power supply.
An input voltage between 0V and ∼ 10V at the analog input results in an output voltage between 0V and ∼ 3kV. The
voltage applied to the Pockels cell should not exceed 2kV. A voltage range between 0V and 1.8kV produces sufficient
data to evaluate.

2.2.1 Characterization of the high voltage supply / Familiarization with the set-up

During the experiments you will need to measure the desired optical signal with a photodiode against the voltage on the
Pockels cell. The oscilloscope cannot handle the high voltage, but you can measure the control voltage on the analog input
of the high voltage supply. Therefore, you need to know the voltage amplification factor of the high voltage power supply.
The power supply is built for low frequency modulation, so either use a low frequency modulation or the output of the
low voltage power supply.
First step: Measure the amplification factor of the high voltage amplifier / power supply.

• Switch off the high voltage power supply. Leave the power supply connected to the filter-box, but disconnect
the Pockels cell from the filter-box in order no to harm the cell inadvertently. The filter-box remains connected
to discharge the high-voltage output and to let you check whether the current-settings of the high voltage power
supply are not too low. To disconnect the cell from the filter-box: disconnect the cables on the filter-box side so
that you can measure the entire set-up without high voltage risks, such as short-circuiting etc. due to having open
cables next to a steel table.

• Next, connect the dc power supply to the analog input of the high voltage power supply. Set the toggle switch to
Ext.
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• Since the oscilloscope cannot take more than 300V, you cannot measure the high voltage signal directly; you will
have to rely on the indicators on the display of the power supply.

• Evaluate your measurements in your log book (Is the amplification linear? Can you use your data points or do they
scatter too much? What limits should you set on the input voltage the not to harm the Pockels cell? etc.) before
proceeding with the next step.

Second step: Set up the function generator and the oscilloscope for the following series of experiments
• Connect the function-generator to the oscilloscope and display a full period on the screen with a frequency of

∼ 0.6 − 1Hz.
• Adjust the amplitude and offset of the function generator correctly, so that the Pockels cell will survive (𝑉output =

0 − 1800V).
• Hint: make your adjustments of the function generator at a high frequency (∼kHz) to have an accurate feedback
on your changes. Don’t forget to switch back to low frequencies when actually measuring.

Parameter value
Optical wavelength 𝜆 = 632.8~nm
Pockels cell material LiNbO3
Electrode separation 𝑑 = 2~mm
Crystal length 𝐿 = 20~mm
Indices of refraction 𝑛𝑜 = 2.286
at 𝜆 = 633~nm 𝑛𝑒 = 2.200

2.2.2 Mach-Zehnder interferometer

To determine whether light undergoes a phase shift and to which extent, one needs a set-up that compares the phase of the
original laser beam with the phase of the light transmitted through the Pockels cell. Here, a Mach-Zehnder interferometer
is useful. A Mach-Zehnder interferometer consists of two non-polarizing (Why?) beam splitters and two (totally reflect-
ing) mirrors, see Fig. 2.3. Since the two beams travel independently and spatially separated through the interferometer,
phase shifts can be introduced to a single beam, without affecting the other one. The result of the phase shift can be
determined by the intensity output. Due to the two separated beams, a Mach-Zehnder Interferometer is difficult to align,
but its high sensitivity to phase shifts makes it useful for various applications.

Fig. 2.3: Set-up for phase modulation within a Mach-Zehnder Interferometer

The intensity at one output port of the interferometer is 𝐼out is related to the incident intensity 𝐼in by

𝐼out = 1
2 𝐼in + 1

2 𝐼in cos 𝜙 = 1
2 𝐼in (1 + cos 𝜙)
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where 𝜙 = 𝜙1 − 𝜙2 is the phase difference between the light beams passing through the branches 1 and 2. For the
transmittance we have:

𝑇 = 𝐼out
𝐼in

= 1
2 (1 + cos 𝜙) = cos2 𝜙

2
If the Pockels cell is placed in branch 1, we get

𝜙1(𝑉 ) = (𝜙1)empty + Φ(𝑉 ) = (𝜙1)0 + (Φ0 − 𝜋 𝑉
𝑈𝜋

) = (𝜙1)′
0 − 𝜋 𝑉

𝑈𝜋
.

Yielding the following relation between 𝜙 and the applied voltage:

𝜙(𝑉 ) = 𝜙0 − 𝜋 𝑉
𝑈𝜋

where the constant 𝜙0 = (𝜙1 − 𝜙2)0 includes the path difference between the two branches. (In this set-up 𝜙0 = 0, but
in other books you might find other types of Mach Zehnder Interferometers.)
We finally obtain for the transmittance:

𝑇 (𝑉 ) = cos2 (𝜙0
2 − 𝜋

2
𝑉
𝑈𝜋

)

ToDo

First step: Determine the directions of the optical axes of the Pockels cell (see also chapter on Part 1 and the table
above). Construct a Mach-Zehnder Interferometer with the electro-optical modulator in one arm.

• Set up the first beam splitter and the mirrors. It is recommended to have the beams all lying in the same, horizontal,
plane. If this is impossible, the original laser beammight not be parallel to the optical table, or the first beam splitter
is tilted. The former can be corrected by using a so-called ‘’dog leg’’ before entering the interferometer: use two
mirrors to create a Z-shaped laser beam path, which allows you to align the laser beam in every possible direction.
The latter problem can be corrected with the screws of the mounting of the beam splitting cube.

• Next, adjust the mirrors so that both laser beams cross (again, preferably in the same horizontal plane) at a certain
point, preferably with the beam paths perpendicular to each other.

• Insert the second beam splitter. The point where the two beams cross has to be at the beam splitting interface
within the cube. You will have a good approximation of this when the beams enter the cube at the same position
(in the center of the surface, ideally) and/or if they seem to overlap directly after the cube in both exit ports of the
interferometer.

• Now, adjust the second beam splitter so that both beams in at least one exit port overlap. At a proper alignment you
will be rewarded with an interference pattern in the exit beams. It is helpful to use a lens to widen up the beam, so
that you can detect the interference pattern more easily.

• To measure the phase difference, adjust the interferometer so that you see∼ 3−5 interference maxima in the laser
beam. Widen up the interference pattern with a lens so that the fringe spacing is approx. 2mm at the position of
the photodiode and project only the maximum of a single fringe (Why?) onto the photodiode (use an iris).

• In general: Keep in mind that you can only influence reflected beams, not those transmitted by beam splitters. Also
note that a large interferometer is more sensitive to noise (vibrations from walking around etc.).

Now set up the measurement
• Make sure you have determined the correct position/orientation of the Pockels cell with respect to the polarization
of the incident light.

• Make sure that you do not saturate the photodiode (𝑉out < 3V).
Measure the output intensity as a function of the applied voltage for both crystal axes.
Compare the result for both ±90∘ axes. What effect does a rotation of 180∘ of the Pockels cell have?
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Evaluation

• Determine the half-wave voltage 𝑈𝜋 for both crystal axes.
• Determine the Pockels coefficients 𝑟13 and 𝑟33.

Just for fun: connect the loudspeaker to the photodiode and tap lightly on the table next to the interferometer; can you
explain what you hear and what you see in the interference pattern?

2.2.3 Polarization Manipulation / Intensity Modulation

The Pockels cell is a birefringent crystal, with both the fast axis and the slow axis voltage dependent, the device acts as
an arbitrary-wave retarder. To understand this fact we have to observe the phase difference between both perpendicular
planes of linear polarization. As explained in the theory section, this phase difference is given by

ΔΦ(𝑉 ) = Φ0 − 𝜋 𝑉
𝑉𝜋

(2.7)

where

Φ0 = 2𝜋
𝜆 (𝑛𝑒 − 𝑛𝑜) 𝐿

and

𝑉𝜋 = 𝑑
𝐿

𝜆
(𝑟33𝑛3𝑒 − 𝑟13𝑛3𝑜) (2.8)

are the retardation for 𝑉 = 0 and the so called half-wave voltage, respectively. At 𝑉 = 𝑉𝜋 the relative phase retardation
between the two polarizations is 𝜋, causing the Pockels cell to act as a half-wave plate.
The effect of the Pockels cell on the polarization state of transmitted light can be studied in a manner equivalent to the
experiments of Part 1. You can measure the intensity of light transmitted by a pair of crossed polarizers with the Pockels
cell in between. Here, you will measure the intensity behind the analyzing polarizer with a photodiode as a function of
the high voltage applied to the Pockels cell.

Fig. 2.4: Experimental Set-up for Transverse Amplitude Modulation
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To do

Construct the set-up outlined in Fig. 2.4, with the Pockels cell placed between two crossed polarizers with their transmis-
sion axes at an angle of 45∘ to the optical axis of the crystal. Why does the Pockels cell need to be at 45∘? Make sure
you have determined the correct orientation of the Pockels cell. Make sure you will not saturate the photodiode.

• Measure the transmitted power on the photodiode as a function of the applied high voltage on the Pockels cell for
both orientations ±45∘. Record your data on the computer.

Evaluation

• Use the plots of transmitted power vs. applied voltage for both orientations±45∘ to determine the half-wave voltage
𝑉𝜋.

• What is the difference between the ±45∘ cases?
• If the first intensity maximum is not at 0V: why is that?
• Calculate 𝑉 calc

𝜋 for the Pockels cell, using Eq.(2.8) and your previously measured values of 𝑟13 and 𝑟33.

• Calculate 𝑉 calc
𝜋

′ directly from your measured (𝑈𝜋)𝑒 and (𝑈𝜋)𝑜.
• Compare your calculated and measured results to the specifications: 𝑉𝜋 ≈ 380V.

2.2.4 Linear Amplitude Modulation

Consider the set-up of your previous experiment, see Fig. 2.4. For a certain range of voltages, the intensity output of the
setup shows an almost linear dependency with the applied voltage. This means that it is possible to linearly modulate the
intensity of the transmitted light and thus transmit an arbitrary signal optically. For this, one has to modulate the applied
voltage to the Pockels cell with the desired signal. For maximum signal amplitude modulation, you have to set up the
Pockels cell at this particular voltage, then also a low-voltage signal can suffice to give an appreciable intensity variation.
What is the necessary high voltage offset? At this voltage, the Pockels cell acts equivalently to another optical
element. Which element is that?

Fig. 2.5: Voltage range for Linear Amplitude Modulation
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To test the possibility of linear amplitude modulation, and to get an idea of the possible response-time of the Pockels cell,
use the set-up of the previous experiment, see Fig. 2.4. Use the ‘internal’ setting of the high voltage supply to apply a DC
offset voltage to the Pockels cell. Use the function generator for a high frequency (∼kHz) signal. Add both signals via
the filter-box in the set-up; now the Pockels cell will ‘see’ both voltage signals. Compare the function generator / input
signal with the photodiode signal on the oscilloscope; optimize the amplitude response of the photodiode (in other words:
optimize the modulation efficiency of your set-up) by varying the offset voltage for the Pockels cell.

Evaluation

• What happens with the transmitted signal at different offset voltages? Why is that?
• At which points can you improve the signal-to-noise ratio? e.g. should you amplify the laser power, the high
voltage, the modulation amplitude and/or other parts of the set-up?

Now replace the signal of the function generator with a radio signal and connect the output to a loudspeaker instead of to
the oscilloscope. First check with the loudspeaker whether the radio (web-radio from the lab-computer) is turned on and
tuned to a radio station. Connect the photodiode to the loudspeaker and listen to the effect of changing the offset voltage
on the Pockels cell and varying the orientation of the last polarizer.

• Describe and explain your observations.

2.2.5 Note

The fast response of electro-optic modulators to electric field changes is used in LCD-displays and similar devices. Electric
fields then switch the orientation of long polymer chains between crossed polarizers to vary the light transmission through
the pixel.
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CHAPTER

THREE

PART 3: ACOUSTO-OPTIC EFFECT

3.1 Theory

The refractive index of a crystal can be changed by a sound wave. Since a sound wave is a periodic density modulation,
the refractive index itself will also varies periodically. The spatial period of the modulation is the sound wavelength, 𝜆𝑠.
A sound wave in a crystal with initial refractive index 𝑛0 can be described by:

𝑛(𝑥, 𝑡) = 𝑛 − Δ𝑛0 cos (𝜔𝑡 − 2𝜋
𝜆𝑠

𝑥)

Δ𝑛0 is the amplitude which is given by the photo-elastic constant 𝑝 and the amplitude of the strain (relative displacement)
𝑠0:

Δ𝑛0 = 1
2 𝑝𝑛3𝑠0

This is also proportional to the acoustic intensity.

Fig. 3.1: Modulation of the refractive index by a sound wave

The simplest form of interaction between a laser beam and a sound wave is the so called Bragg diffraction, which appears
for long interaction lengths, i.e. wide crystals. Here, the laser beam is reflected partially or totally off planes of equal
density in the crystal.
For a short interaction length, i.e. a thin crystal or better a thin sound beam, the Debye-Sears effect appears. Here the
sound beam acts as a phase grating: since the laser beam has a certain width, the initial plane wavefront is deformed by
travelling through the sound beam. The parts of the light beam travelling through denser areas of the crystal experience
a higher index of refraction, than other parts. This means that the parts of the former plane wavefront incur a phase shift
relative to each other. In this sense the system is analogous to a grating: in the near field the final wavefront leaving the
crystal is bent, in the far field it gives rise to an interference pattern with several higher orders, as shown in Fig. 3.2.
Since the light interacts with a moving sound wave, the diffracted light is Doppler-shifted. This means that the light in
higher orders has a higher or lower frequency, depending on the number of the diffraction order.
To calculate the diffraction angles, have a look at Fig. 3.3. Light reflected from A and B interferes constructively, if (3.3)

sin 𝜃1 + sin 𝜃2 = 𝑚𝜆
𝜆𝑠
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Fig. 3.2: Deformation of a plane wavefront by a sound wave travelling through a thin crystal

Fig. 3.3: One can observe a maximum in the far field if light reflected from A and B interferes constructively.
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where 𝜃1 is the incident angle of the light, 𝜃2 is the diffraction angle and 𝜆 and 𝜆𝑠 are the wavelengths of the light and
the sound wave respectively. The Bragg condition for constructive interference is fulfilled when

sin 𝜃𝐵 = 1
2

𝑚𝜆
𝜆𝑠

with 𝜃𝐵 the Bragg-angle. In the case of a thin grating, as we have here, we have 𝜃1 + 𝜃2 = 2𝜃𝐵, and for a thick grating
the more rigorous 𝜃1 = 𝜃2 = 𝜃𝐵 holds.
Since the sound wave, i.e. the grating, is moving, one should consider the effects of the Doppler shift of a wave reflected
on a moving mirror, which is given by

Δ𝜔 = 2𝜔𝑣
𝑐

with 𝑣 the velocity of the mirror. For the case of the grating in an AOM we have 𝑣 = 𝑣𝑠 sin 𝜃1 (see Fig. 3.3) so that the
resonating frequency inside the crystal (the frequency showing constructive interference on the grating) is the one Doppler
shifted to:

𝜔res = 𝜔 + 2𝜔𝑣𝑠 sin 𝜃1
𝑐

where 𝑣𝑠 is the sound velocity in the crystal. Using again the Bragg condition 2𝜆𝑠 sin 𝜃1 = 𝜆 one sees that

Δ𝜔 = 2𝜋 𝑣𝑠
𝜆𝑠

= 𝜔𝑠

Thus each diffraction spot has a different optical frequency, given by:

𝜔out = 𝜔in + 𝑚Δ𝜔 = 𝜔in + 𝑚𝜔𝑠

or equivalently:

𝜈out = 𝜈in + 𝑚Δ𝜈 = 𝜈in + 𝑚𝜈𝑠

3.1.1 Photon-phonon model

Another way to visualize the effect of an AOM on a light beam is to regard the system as two scattering quasi-particles:
a photon and a phonon. Both quasi-particles carry a momentum of ℏ�⃗�𝑙 and ℏ�⃗�𝑠, respectively, with �⃗�𝑖 the wave vector of
the interacting waves. Momentum conservation dictates that

�⃗�out = �⃗�in ± 𝑚�⃗�𝑠 , (3.1)

and energy conservation dictates

𝜈out = 𝜈in ± 𝑚𝜈𝑠 . (3.2)

with𝑚 the diffraction order, i.e. the number of phonons the light wave interacted with. Eqs. (3.1) and (3.2) show that the
outgoing light wave has undergone a change in both frequency and direction with respect to the incident light, proportional
to the diffraction order and the used sound frequency. Light beams diffracted by the density variations caused by the sound
wave interfere constructively when

sin 𝜃1 + sin 𝜃2 = 𝑚𝜆
𝜆𝑠

, (3.3)

where 𝜃1 is the angle under which the light enters the crystal and 𝜃2 is the diffraction angle.
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The dependency of the diffraction efficiency of the AOM, meaning the power transmitted to the first order maximum,
relative to the power in the un-diffracted beam, is given by:

𝑅 = sin2 ( 𝜋𝐿
𝜆 cos 𝜃𝐵

√𝑀2𝐼𝑠
2 ) (3.4)

where 𝐿 is the interaction length of the light beam with the sound wave, 𝜆 is the optical wavelength, 𝜃𝐵 is the Bragg
angle, 𝐼𝑠 is the intensity of the sound wave. 𝑀2 is a figure of merit for the used acousto-optic material1, in the case of
the used TeO2 the constant is 𝑀2 = 34.5 × 10−15s3kg−1. For low sound-input power, the behaviour is approximately
linear. For higher sound-input powers the power behaves as a squared sine function, as shown in Fig. 3.4.

Fig. 3.4: Relative power transmitted to the first diffraction order as a function of sound-power

3.2 Experiments

In this part you will learn how a light beam can interact with a sound beam.
There are two possibilities for the interaction: the diffraction of a light beam by the Debye-Sears-effect or by Bragg-
diffraction. In this set-up one can observe the Debye-Sears-effect. If the crystal, or better the sound-beam, is thin enough,
it behaves as a phase grating with period equal to the wavelength of the used sound wave, 𝜆𝑠.
The sound wave is not coupled into the crystal by a simple loudspeaker, but by an acoustic transducer using the Piezo-
electric effect: A high-frequency signal (∼ 110MHz) is applied to one end of the crystal. The piezo-electric crystal is
compressed and expanded by the signal thus being compacted and rarefied. This density variation which is now moving
through the crystal is the sound wave.
The signals, with a necessary power of ∼ 1W, are produced by the AOM-drivers, which you will find above the tables.
The heart of these AOM-drivers is a VCO (Voltage Controlled Oscillator), which produces an oscillating signal with a
frequency proportional to the input voltage 𝑉in. Fig. 3.5 shows the front of the driver. If the VCO frequency switch switch
is set to intern, the VCO gives out its internally specified frequency2. When the toggle switch is set to extern, the input
voltage 𝑉in can be directly applied to the BNC-connector below.
The signal amplitude is controlled similarly: when theVCO level switch is set to intern, the driver gives out its internally
specified amplitude3. When the toggle switch is set toextern, the signal amplitude can be controlled by a voltage applied
to the BNC-connector below.
The output (hf-output) is transmitted directly to the crystal. If the amplifier is switched on, the output has to be
connected ! Otherwise, the entire power would be reflected into the driver, which would kill it immediately! (Reflection
of waves on an open end.)

1 𝑀2 = 𝑛6
0𝑝2/𝜌𝑣3

𝑠, with 𝑛0 the refractive index, 𝑝 the photo-elastic constant, 𝜌 the material density and 𝑣𝑠 the sound velocity in the crystal.
2 in principle one can change the VCO-input voltage - and thus the generated frequency - by turning the screw under Frequency. This should only

be done by the tutor!
3 In principle one can change the default signal amplitude by turning the screw under Amplitude. This should only be done by the tutor!
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Fig. 3.5: Front panel of an AOM driver

3.2.1 Experiments with a single AOM

In the following experiments, construct your set-up according to Fig. 3.6.

Fig. 3.6: The angles can be determined by measuring the distance between the first and the zero order maximum.

To do

• Adjust the AOM so that the amplitude of the diffraction pattern is approximately symmetric in both ±1 orders.
Measure the diffraction angles of the first and second order maxima for different frequencies, see Fig. 3.6. This
AOM can work at 110 ± 25 MHz, use a suitable stepsize. You can increase the precision of your result when you
reduce the relative errors in your measurement; construct your set-up accordingly.

• Measure the power in one first order maximum, relative to the power in the undiffracted beam, vs. the frequency of
the sound wave in the same range and stepsize as before. Make sure beforehand that the photodiode is not saturated
and reduce laser power if necessary (e.g. using a polarizer and PBS to couple power out of the main beam.)

• Optimize the power in the first order maximum. Determine the relation between the power in the first order

3.2. Experiments 23



TP Optics in Heidelberg

maximum, relative to the power in the un-diffracted beam vs. the amplitude of the sound wave, see also Fig. 3.4.
Make sure beforehand that the photodiode is not saturated, as before.

Parameter value
Optical wavelength 𝜆 = 632.8~nm
AOM material TeO2
Crystal length 𝐿 = 20~mm
Indices of refraction 𝑛𝑜 = 2.261
at 𝜆 = 633~nm 𝑛𝑒 = 2.142

Evaluation

• Plot and evaluate the data of your measurements.
• Determine the sound velocity in the AOM-crystal.
• What is the wavelength of the sound in the crystal? On how many grating periods does the light diffract?
• Determine the sound power in the crystal at the optimum deflection efficiency.
• Which elements in the AOM-set-up determine the optimum working frequency?

3.2.2 Two perpendicular AOMs

For the next series of experiments, adjust two AOMs perpendicular to each other, so that the laser beam traverses both
AOMs, see Fig. 3.7. Put both AOMs close (<∼ 1cm) to each other.

Fig. 3.7: A set-up with two AOMs perpendicular to each other

On the optical table, you will find a box with one input-port and two output-ports. This is the so-called phase-shifting
box. The phase-shifting box takes a single input signal which it transmits to both output ports. When the incoming signal
is periodic, the box allows you to delay the output on one output port, thus to change the relative phase between both
output signals. The box also allows you to add a voltage offset to each output signal independently. For the operation of
the phase-shifting box you have to create 0𝑉 and±18V. This only works with the power supply that has two independent
outputs that allow to produce more than 18V individually.
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To do

Connect each output of the phase-shifting box to the frequency-control inputs of one AOM driver. Do so via the oscillo-
scope, so that you can monitor that the applied voltages remain inside the allowed boundaries.

• What diffraction pattern of the laser do you expect? What do you get?
• What happens to the diffraction pattern when you change one or both of the offset voltages? Why is that?
• Now connect the function generator to the phase shifting box input. It may be enlightening to switch the oscilloscope
between YT-display (regular format) and the XY-mode. Here channel 1 is displayed as X, channel 2 as Y on the
oscilloscope display. Note that the signal offset-value is not shown when the oscilloscope is in XY-mode.

• Make sure you stay within the limits.
Next step:

• What happens to the diffraction pattern when you modulate the sound amplitudes at a modulation frequency of
∼ 1 − 100Hz? And above? And for different input wave forms?

• What happens to the diffraction pattern when you modulate the sound frequencies of both AOMs simultaneously
at a modulation frequency of ∼1-100Hz? And above? And for different input wave forms (sine, triangle, block)?

• Observe and explain the diffraction patterns at a relative phase difference between both output channels of 0∘, 90∘,
and 180∘.

• Compare the diffraction spots of the zeroth and first rows and columns respectively for each relative phase difference.
How are the patterns connected to each other? Can you use the previous steps to draw a circle with the (±1, ±1)
or (±1, ±2) order? And with the (±2, ±2) order?

• How do these effects relate to the polarization state of light, in the sense of two perpendicular oscillating fields?
Evaluate your observations in this part of the practicum in relation to what you learned in the first part of the
practicum.

• The phase-shifting box and its effect on the pattern of the (±1, ±1) order can be seen as the analogue to another
part of the practicum: which part?

Connect each AOM to a different function generator (again via the oscilloscope). In this way, you can observe the effects
of having different frequencies and varying relative phases between both modulation signals. The phase-shifting box
is unnecessary here. (You might have to borrow the second frequency generator from your colleagues for a couple of
minutes).

• Try to modulate the sound frequency of one AOM exactly twice, three times,…, as fast as the other one. What
happens when the modulation is not exactly 𝑛 times the other? How can you tell when the phase difference is stable?

• Can you now draw a circle with the (±1, ±2) order? And with the (±2, ±2) order?
• How do these effects relate to the polarization state of light in the sense of two perpendicular oscillating fields?
• What is the difference between a laser and ‘regular’ light (e.g.\ from a light bulb)?
• What do the coherence time and -length of a laser mean?

3.2.3 Note

AOMs are used for several purposes. Usually the zeroth order, the un-diffracted beam, is blocked and only the first order
is used. With an AOM one can realise a fast switch for optical signals, since the switching time is determined by the
intensity slope of the sound pulse and its velocity inside the crystal. Switching times of ∼ 10ns can be reached.
In atom-optical or spectroscopic experiments the frequency shift of the orders is used: the wavelength (frequency) of
a laser is fixed to some convenient value near the frequency desired for the experiment. AOMs then allow to generate
several different frequencies for the experiments all derived from the same center frequency delivered by the single laser,
rather than to have to build several lasers.
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Other purposes use the scanning function when sweeping the input frequency: e.g. laser shows. But the most prominent
use is the use in laser-printers: AOMs deflect a laser beam across an electrically charged drum and induce a small,
local discharge. At these spots toner particles will stick, which can then be stamped onto the paper. In this case two-
dimensional deflection is performed by having two piezo-elements on different faces of a single crystal, rather than having
two independent AOMs.
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